Cancer is a major cause of all natural mortalities and morbidities throughout the world. Pointed out the exact tumor types provides an optimized solution for the better treatment and toxicity minimization due to medicines on the patients. To get a clear picture on the insight of a problem, a clear cancer classification analysis system needs to be pictured followed by a systematic approach to analyse global gene expression which provides an optimized solution for the identified problem area. Molecular diagnostics provides a promising option of systematic human cancer classification, but these tests are not widely applied because characteristic molecular markers for most solid tumor save yet to be identified. Recently, DNA microarray-based tumor gene expression profiles have been used for cancer diagnosis. Existing system focused in ranging from old nearest neighbor analysis to support vector machine manipulation for the learning portion of the classification model. We don’t have a clear picture of supervised classifier (Supervised Multi Attribute Clustering Algorithm) which can manage knowledge attributes coming two different knowledge streams. Our proposed system takes the input from multiple source, create an ontological store, cluster the data with attribute match association rule and followed by classification with the knowledge acquired (Ref: Viji D, Sivakumar S. Cancer Prediction Using Mining Gene Expression Data. Discovery, 2015, 30(132), 295-301), (Image: http://www.nimr.mrc.ac.uk/).
Cancer Prediction Using Mining Gene Expression Data
Viji D, Sivakumar S

Cancer is a major cause of all natural mortalities and morbidities throughout the world. Pointed out the exact tumor types provides an optimized solution for the better treatment and toxicity minimization due to medicines on the patients. To get a clear picture on the insight of a problem, a clear cancer classification analysis system needs to be pictured followed by a systematic approach to analyse global gene expression which provides an optimized solution for the identified problem area. Molecular diagnostics provides a promising option of systematic human cancer classification, but these tests are not widely applied because characteristic molecular markers for most solid tumor save yet to be identified. Recently, DNA microarray-based tumor gene expression profiles have been used for cancer diagnosis. Existing system focused in ranging from old nearest neighbor analysis to support vector machine manipulation for the learning portion of the classification model. We don’t have a clear picture of supervised classifier (Supervised Multi Attribute Clustering Algorithm) which can manage knowledge attributes coming two different knowledge streams. Our proposed system takes the input from multiple source, create an ontological store, cluster the data with attribute match association rule and followed by classification with the knowledge acquired.

Performance Analysis of Vertical Handover Triggering Algorithms for Data over Cellular Network
Agalya S, Prabaharan G

For real-time applications running over hand-held mobile terminals in heterogeneous environments, efficient vertical handover (VH) algorithms are required in maintaining a seamless connectivity and an acceptable level of quality. While received signal strength-based methods have dominated this class of algorithms, we propose a thorough system analysis framework and perform rigorous analysis for packet-loss based algorithms for an interworking environment comprising the cellular network and the Wireless Local Area Network (WWSN). This paper proposes a novel vertical handoff algorithm between WWSN and CDMA networks to enable the integration of these networks. The proposed vertical handoff algorithm assumes a handoff decision process (handoff triggering and network selection). The handoff trigger is decided based on the received signal strength (RSS). To reduce the likelihood of unnecessary false handoffs, the distance criterion is also considered. As a network selection mechanism, based on the wireless channel assignment algorithm, this paper proposes a context-based network selection algorithm and the corresponding communication algorithms between WWSN and CDMA networks. The OQAM (Orthogonal Quadrature Amplitude Modulation) modulation and demodulation reduces the bit error rate as well as increase the signal strength at the nodes of the networks. This model is applicable to different networks which all are connected by the multiple Nodes. In this project, various positioning algorithms for range-based Time of Arrival (TOA) and Time Difference of Arrival (TDOA) localization based on the dual clustering protocol have been analyzed.

Adaptive encryption techniques in cloud database services
Pradeepa M, Bhuvaneswari A

The user’s perception that the confidentiality of their data is endangered by internal and external attacks is limiting the diffusion of public cloud database services. In this context, the use of cryptography is complicated by high computational costs and restrictions on supported SQL operations over encrypted data. Database as a Service paradigm (DBaaS) that poses several research challenges in terms of security and cost evaluation from a tenant’s point of view. Here proposed that takes advantage of adaptive encryption mechanisms to guarantee at runtime the best level of data confidentiality for any type of SQL operation. The adaptive encryption of public cloud databases that offers an interesting alternative to the trade-off between the required data confidentiality level and the flexibility of the cloud database structures at design time. A large set of experiments are to be carried out to show that these encryption schemes represent a feasible solution for achieving data confidentiality in public cloud databases even from a performance point of view.